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Final Report 

1-2. Introduction & Problem Definition 

Weather conditions significantly influence public transportation usage, but the extent of this 
impact remains understudied. In New York City—where millions rely on the subway daily—
understanding how factors like temperature, precipitation, and holidays affect ridership can 
empower transit planners to optimize service and help commuters make informed travel 
decisions. This project leverages statistical modeling and machine learning with historical data to 
quantify these relationships and predict subway ridership under varying weather conditions.  

3. Literature Survey 

As of 2020, the U.S. Census Bureau (Vintage 2023) estimated that New York City and its boroughs 
have a population of approximately 8.8 million, making NYC the most populous city in the United 
States. This immense population imposes significant pressure on the city’s public transportation 
infrastructure—particularly on its subway system, the most widely used mode of transit according 
to MTA (2023). Given these demands, improved methods for forecasting ridership can be highly 
valuable to transit operators, everyday commuters, researchers, and students interested in 
external impacts on subway ridership.  

Many researchers have studied how weather influences public transportation ridership. Ngo 
(2024), for example, explores the effects of extreme weather on U.S. transit systems by running 
separate regressions for different time segments, whereas Arana (2014) gathers and visualizes 
data to show how temperature, rainfall, and wind correspond with trip volumes. In China, Jiang 
(2023) employs multiple linear regression and generalized linear fixed-effects models to examine 
metro ridership in three major cities, and Ding (2018) deconstructs Beijing’s subway passenger 
volume into a deterministic component derived from an ARIMA model and a stochastic volatility 
component based on a non-linear GARCH family approach. Further explorations include Tang 
(2021), who applies time-series decomposition (separating seasonal and epoch factors) to predict 
short-term traffic on Chongqing Rail Transit, and Ding (2016), which uses gradient boosting 
decision trees for short-term forecasting across three Beijing subway lines. Other notable studies 
include Brazil (2017), applying regression models to 30 train services on Dublin’s DART network, 
Kim (2020), assessing weather and calendar effects via generalized linear models on 20 months of 
smart card data, and Vitello (2024), combining mobile crowdsensing data with regression methods 
to estimate subway station demand. While these works collectively establish a consistent 
weather-ridership connection, most depend on comparable parametric models, potentially 
oversimplifying the influences on ridership. Additionally, many focus on more recent Chinese rail 
systems, which may not translate directly to the historical complexity of older networks like New 
York City’s subway.  

Building on these earlier findings, we aim to strengthen predictive accuracy and address limitations 
in a more nuanced way. Previous research findings indicate that linear regression has proven 
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useful for revealing certain weather-ridership relationships (e.g., Ngo 2024; Arana 2014). Existing 
research offers multiple angles on how weather shapes travel mode decisions: Singhal (2014) 
notes that severe events such as heavy snow may push bicyclists and drivers to switch to transit, 
whereas Cui (2023) and Ettema (2017) show that wind speed can negatively influence passenger 
flow and temperature shifts can sometimes increase ridership. Similarly, Lepage (2020) highlights 
a negative effect of rainfall on usage.  

These collected insights directly assist in furthering our team’s exploration of NYC’s subway 
system, whose long history and global importance make it an excellent case for assessing and 
refining the proposed predictive methods. 

4. Proposed Method 

Building on our literature review, our project will explore the following innovations: predicting 
ridership by incorporating holiday data & more weather variables; implementation of a multiple 
linear regression design to capture the relationship between the predictors and ridership; using 
machine learning to build additional predictive models for predicting ridership; creating interactive 
visualizations to analyze the ridership and weather interactions; developing a front-end and back-
end system for model inferencing to predict daily ridership.  

We began the data pre-processing phase focused on cleaning and transforming the data, reducing 
the large csv dataset of 111 million rows to a 7 GB SQLite database through normalization and 
creating lookup tables for categorical variables. Next, we explored traditional time series models, 
such as Holt-Winters Exponential Smoothing and SARIMA, which are useful in identifying some 
patterns in the data. However, they may fall short in accurately capturing complex patterns 
influenced by non-linear variables such as weather conditions like temperature and rainfall, and 
holidays. By incorporating these features, we expect our approach to deliver more accurate 
forecasts that consider these additional sources of variation. 

The dataset for predictive modeling was ingested from various sources which was further 
processed to obtain the final dataset for modeling. The daily ridership was obtained by aggregating 
the hourly dataset to daily, which consisted of 1,325 daily ridership from June 2021 to December 
2024. We then collected 26 weather features from Open-Mateo API, federal holidays from Azure 
Open Datasets and NYC public school holidays from and NYC Department of Education website. 
We merged the datasets, performed Exploratory Data Analysis (EDA) using scatter plots, 
histograms, and box plots, and conducted multicollinearity analysis (correlation heat map, 
Variance Inflation Factor – VIF) to clean redundant features such as temperature min/max, 
apparent temperature min/max, rain_sum, wind_gusts_10m_max, et0_fao_evapotranspiration’, 
etc (Fig 1). Based on the histograms, while most of the data looked normally distributed, features 
like rain and snowfall were strongly right skewed, and temperature, daylight, ridership had bi-
modal peaks, raising corners over the violation of linear assumptions. Based on the scatter plots 
and box plots, weekend, holiday, precipitation, snowfall, and windspeed displayed promising 
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correlation with ridership. Furthermore, feature engineering was another key part of the process, 
where we developed new features such as “temp_2m_range” and categorized weather conditions 
into three groups based on the World Meteorological Organization (WMO) code (Fig 2, Fig 3). These 
engineered features, combined with standard data preparation techniques, allowed us to build a 
more structured and meaningful dataset for our modeling tasks.  

The final dataset consists of a range of features, including temperature (mean and range), wind 
speed, precipitation, weather categories (Fair, Moderate, Severe), holidays, weekends, snowfall, 
and others. This comprehensive data set enables an in-depth analysis of how various factors 
influence subway ridership and supports the development of predictive models that account for 
these effects. The primary research questions guiding this research include: What are the most 
significant predictors of daily subway ridership? How do weather conditions, such as temperature 
and precipitation, impact ridership levels? What is the influence of public holidays and weekends 
on subway usage? Finally, can machine learning models surpass traditional time series methods in 
terms of predictive accuracy? 

Beyond time series methods, we explored a range of machine learning techniques, leveraging both 
parametric and non-parametric models to analyze the data from multiple perspectives and 
improve predictive power. To capture the linear relationship between the features and daily 
ridership, we used multiple linear regression and regularized regression methods–including Ridge, 
Lasso, and Elastic Net. These models offer interpretability, helping us quantify the impact of 
individual features and assessing statistical significance. However, they might struggle to fit non-
linear and complex real-world patterns, leading to potential underfitting and bias.  

On the other hand, non-parametric models such as tree-based approaches (e.g., Decision Tree, 
Random Forest, Gradient Boosting), dimensionality reduction with Principal Component Analysis 
(PCA), K-Nearest Neighbors (KNN), and more complex models like Recurrent Neural Networks 
(RNN) with Long Short-Term Memory (LSTM), were tested to handle feature complexity. These 
models excel at capturing non-linear patterns and interactions, particularly for variables such as 
weather and holiday conditions, that may not adhere to strict linear assumptions and improve the 
prediction performance. Especially, during the training of the RNN-LSTM model, we further feature 
engineered temporal features from date (month, day, day of week, day of week sin, etc.), which is 
designed to capture long-range dependencies in the sequential data like daily ridership influenced 
by historical weather patterns and recurring holidays effects over time. To further enhance the 
predictive power and optimize the model performance, we performed cross validations over a grid 
of parameters, such as alpha for regularized regression, learning rates, number of trees, maximum 
depth for tree-based models, and hidden layers, epochs for RNN-LSTM. Following the performance 
gain with temporal features in our RNN-LSTM model, we subsequently explored incorporating 
these temporal features with our previously trained regression and tree-based models. 

For the visualization component of the project, we developed an interactive web application that 
leverages three primary data exploration techniques to create a comprehensive and user-friendly 



Predicting Ridership of 
New York City Subway 

Team 100 Jia Bloom • Noah Clark 
Chris Enslin • Kshitij Gurung 

Minh Duc Pham 
 

  4 
 

experience for understanding the data. The frontend of the application is built using React, while a 
Flask API is employed to integrate our trained models into the user interface. The application is 
hosted on Heroku, an affordable cloud platform chosen for its ease of deployment and cost-
effectiveness. 

The web application is organized into six tabs, divided evenly between Project Information and 
Interactive Visualizations. Within the Project Information section, the Home tab presents an 
overview of the project, key findings, and team information; the Data tab provides details about the 
datasets and the preprocessing steps undertaken to prepare it for visualization and modeling; and 
the Methodology tab outlines the team's approaches, innovations, and conclusions. 

The Interactive Visuals section consists of three additional tabs. The D3 tab (Fig 6) features 
dynamic visualizations that highlight key insights into the relationship between weather conditions 
and subway ridership. The Tableau tab (Fig 7) contains a complementary dashboard that narrates 
the story of the data and allows users to explore it further. Finally, the Prediction tab (Fig 8) offers 
an interactive interface through which users can input feature values into several random forest 
models to obtain predicted ridership outcomes for various feature combinations. 

In the Tableau section, an interactive interface is provided to facilitate in-depth exploration of the 
ridership dataset. The report’s landing page is organized into three tabs: Historical, Weather, and 
Holiday & Weekend. The Historical tab presents ridership trends through a line chart, offering drill-
down capabilities at the hourly, daily, weekly, monthly, and aggregated levels. This visualization is 
accompanied by two filters, enabling users to examine ridership by year and during holiday 
periods. The Weather tab provides a comprehensive analysis of the influence of weather variables 
on ridership. Users can investigate the effects of rainfall, temperature deviation (i.e., the range of 
temperatures in degrees Fahrenheit), and maximum average temperature on average ridership 
across a single year or multiple years. These relationships are visualized using scatterplots, bar 
charts, and line charts. The final tab, Holiday & Weekend, assesses the impact of weekends on 
average ridership for a selected year. This analysis is presented through a variety of visual formats, 
including scatterplots, bar charts, line charts, and circle plots. Collectively, these visualizations 
enable users to explore how temporal, climatic, and calendar-based factors influence average 
ridership patterns across the MTA subway system. 

5. Evaluation 

We began with a time series analysis to identify trends and seasonal patterns in the ridership data. 
The decomposition revealed a subtle upward trend in ridership, supported by linear regression and 
confirmed by Kendall’s tau, which showed a moderate positive correlation between time and 
ridership. It also identified a strong weekly seasonal pattern (Fig 9), with Sundays consistently 
having lower ridership than weekdays. Autocorrelation analysis reinforced this with a significant 7-
day lag, highlighting the impact of weekly cycles on ridership. We also found that residuals were 
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skewed, especially during holidays, suggesting anomalies that are challenging to model with 
standard time series techniques (Fig 10). Despite these issues, the time series analysis offered 
valuable insights, guiding the development of our machine learning approach. 

Within the context of daily ridership-predictive modeling, evaluation will be in the form of 
measuring the error rate (RMSE) and the proportion of variance explained by our predictive models 
(R-squared). In terms of experimental design, we divided the data into training and testing sets, 
using 70% of the data for model training and the remaining 30% for testing using scikit learn library. 
We standardized the data using the scikit-learn StandardScaler method before training our models. 
To ensure robust performance and reduce overfitting, we implemented 𝑛 - fold cross validation 
(CV) during the model training. For each model, we divided the dataset into 𝑛 folds, iteratively 
trained it on 𝑛 − 1 folds and validated them on remaining folds for better measure of model 
generalizability. We trained several machine learning models and compared their test performance 
based on key metrics like mean squared error (MSE), Root mean squared error (RMSE) and R-
squared values. Finally, we picked the model that performed the best in terms of maximizing the R-
squared values while minimizing the errors across various weather and holiday conditions (Fig 11). 
Furthermore, we analyzed the feature importance for the features to understand which factors 
contribute the most and how they relate to the ridership (Fig 4, Fig 6).  

The preliminary exploratory analysis revealed several notable patterns. Specifically, heavy rainfall 
was associated with a significant 10% decrease in ridership compared to days without 
precipitation, whereas moderate and light rainfall were linked to smaller declines. Ridership levels 
were found to be highest on weekdays, particularly from Tuesday to Thursday, while weekend 
ridership experienced a marked decline, with the most substantial drop occurring on Sundays. 
These observations were corroborated by initial modeling results, which indicated that weekday 
variables exerted the most substantial positive influence on daily ridership, whereas severe 
weather conditions and precipitation levels had a negative impact. These findings offer valuable 
insights into ridership dynamics and serve to guide and refine subsequent model development. 

Among the models evaluated, tree-based algorithms incorporating weather, holiday, and temporal 
features demonstrated strong performance. The Random Forest model outperformed others, 
achieving the highest R-squared value of 74.8% and the lowest Root Mean Squared Error (RMSE) of 
398,865. This indicates that the model was able to explain 74.8% of the variability in daily New York 
City subway ridership based on the selected independent variables—an impressive result given the 
complexity of real-world data and the limited set of weather and holiday-related features. Given 
that the average daily ridership is approximately 2.96 million, the RMSE represents roughly 13.4% 
of the mean daily ridership. The optimal Random Forest model was developed using fine-tuned 
hyperparameters: max_depth set to 20, min_samples_leaf to 2, min_samples_split to 2, and 
n_estimators to 100. Its performance was rigorously validated through 3-fold cross-validation, 
ensuring robust and reliable results. A summary of the top-performing models and their 
corresponding evaluation metrics is provided in Figure 11. 
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6. Conclusions and Discussion 

Our analysis of daily subway ridership highlights several important insights. Based on RMSE and R-
squared values, the random forest model—incorporating temporal, weather, and holiday data—
emerged as the best-performing model (Fig 11). Notably, the inclusion of both weather and holiday 
data improved predictive accuracy compared to a purely autoregressive time series model, 
underscoring the value of exogenous variables in ridership forecasting. 

The time series analysis revealed a strong weekly seasonality, with ridership peaking on Tuesdays 
and Wednesdays and dropping significantly on weekends, particularly Sundays. Major holidays, 
such as Christmas and Thanksgiving, had a pronounced negative effect on ridership. Weather 
conditions also played a measurable role: higher temperatures, shorter daylight duration, 
increased precipitation, higher snow fall, and stronger winds were generally associated with 
reduced ridership (Fig 4, Fig 5).  

While our model demonstrates strong predictive performance, several limitations present 
opportunities for future research. First, our analysis operates at a daily level, and refining the 
granularity—such as by hourly ridership or individual station data—could provide more nuanced 
insights for transit operations. Additionally, while expanding the dataset beyond the 2020–2024 
period might improve model performance by providing more training data, the COVID-19 pandemic 
complicates this approach, as its extreme impact on ridership could distort long-term trends. 
Future studies could explore segmenting pandemic-era data or applying anomaly detection 
techniques to mitigate this issue.  

Another limitation lies in the variables we incorporated; while weather and holidays proved 
significant, other factors—such as large events (concerts, sporting games), crime rates, or 
macroeconomic indicators (e.g., unemployment, gas prices)—could further enhance predictive 
power. However, collecting such data systematically remains a challenge, particularly for 
decentralized events. Finally, testing the generalizability of our model across different transit 
systems or cities with varying weather patterns, cultural norms, or urban layouts could strengthen 
its broader applicability. Addressing these limitations in future work would not only improve 
forecasting accuracy but also support more adaptive and data-driven public transit planning. 

Our results have practical implications for transit planning and demand forecasting. By accounting 
for weather, holidays, and weekly trends, agencies can better anticipate fluctuations in ridership 
and allocate resources efficiently. Furthermore, the success of the random forest model suggests 
that ensemble machine learning methods are well-suited for transportation demand modeling, 
especially when nonlinear relationships (e.g., weather effects) are present. Future extensions of 
this work could refine predictive accuracy by addressing the limitations above, ultimately 
supporting more resilient and data-driven public transit systems.  

All team members have contributed a similar amount of effort 
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Appendix 
Figure 1: Correlation Heat Map 

 

Figure 2: Box Plot for Categorical variables vs Ridership

 

Figure 3: Ridership vs Temperature (Range, Min, Max, Mean) Scatter plot  
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Figure 4: Feature Importance from Random Forest model 
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Figure 5: SHAP Features Impact plot for Random Forest model 

 

Figure 6: D3 

 

Figure 7: Tableau 

 

Figure 8: Prediction 
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Figure 9: Decomposition, Seasonality Component Zoomed 

 

Figure 10: Residuals of Holt-Winters Exponential Smoothing Model 

 

Note the unhealthy residuals showing deviation from theoretical normal distribution in red in both 
the histogram and Q-Q plot. The largest residuals coincide with major holidays.  

 

  



Predicting Ridership of 
New York City Subway 

Team 100 Jia Bloom • Noah Clark 
Chris Enslin • Kshitij Gurung 

Minh Duc Pham 
 

  12 
 

Figure 11: Models and evaluation metrics 

Model Name RMSE R-squared Best Params 

Random Forest + temporal_features 398,866  0.748 
{'max_depth': 20, 'min_samples_leaf': 2, 
'min_samples_split': 2, 'n_estimators': 100} 

Gradient Boosting + temporal_features 405,769  0.740 
{'learning_rate': 0.2, 'max_depth': 4, 'min_samples_leaf': 4, 
'min_samples_split': 2, 'n_estimators': 50} 

CATBoost Regressor + temporal_features 409,241  0.735 
{'iterations': 500, 'learning_rate': 0.05, 'depth': 6, 
'loss_function': 'RMSE', 'verbose': 100} 

RNN LSTM 429,261  0.729 
{'seq_length': 30, 'hidden_size': 128, 'num_layer': 2, 
'output_size': 1, 'batch_size': 32, 'n_epochs': 100} 

Decision Tree + temporal_features 431,543  0.705 
{'ccp_alpha': 0.01, 'max_depth': 5, 'min_samples_leaf': 4, 
'min_samples_split': 10} 

Random Forest 443,944  0.688 
{'max_depth': 10, 'min_samples_leaf': 6, 
'min_samples_split': 2, 'n_estimators': 50} 

Gradient Boosting 449,038  0.681 
{'learning_rate': 0.1, 'max_depth': 3, 'min_samples_leaf': 2, 
'min_samples_split': 5, 'n_estimators': 50} 

CATBoost Regressor 457,475  0.675 
{'iterations': 500, 'learning_rate': 0.05, 'depth': 6, 
'loss_function': 'RMSE', 'verbose': 100} 

XGBoost Regressor 469,653  0.658 

{'colsample_bytree': 1.0, 'learning_rate': 0.01, 'max_depth': 
4, 'min_child_weight': 10, 'n_estimators': 500, 'subsample': 
0.6} 

Ridge + temporal_features 482,812  0.631 {'alpha': 10} 

ElasticNet + temporal_features 482,848  0.631 {'alpha': 0.1, 'l1_ratio': 0.9} 

Lasso + temporal_features 483,417  0.630 {'alpha': 100} 

PCA RanfomForest 483,999  0.629 n_components = 9 

Decision Tree 488,662  0.622 
{'ccp_alpha': 0.01, 'max_depth': 5, 'min_samples_leaf': 2, 
'min_samples_split': 10} 

PCA Regression 513,923  0.582 n_components = 9 

ElasticNet 514,083  0.582 {'alpha': 0.01, 'l1_ratio': 0.5} 

Ridge 515,171  0.580 {'alpha': 1} 

Linear Regression + temporal_features 515,371  0.580 
 

Lasso 515,499  0.580 {'alpha': 100} 

Linear Regression 515,577  0.580 
 

Holt-Winters Exponential Smoothing 554,598  n/a {'trend': None, 'seasonality':'multiplicative'} 

SARIMA 617,654  n/a {'order': (3,1,2), 'seasonal_order': (2,0,2,7)} 

 

 

 



Predicting Ridership of 
New York City Subway 

Team 100 Jia Bloom • Noah Clark 
Chris Enslin • Kshitij Gurung 

Minh Duc Pham 
 

  13 
 

 

References  

1. Arana, P., Cabezudo, S., & Peñalba, M. (2014). Influence of weather conditions on transit  
 ridership: A statistical study using data from smartcards. Transportation Research Part A: 
 Policy and Practice, 59, 1–12. https://doi.org/10.1016/j.tra.2013.10.019 

2. Brazil, W., White, A., Nogal, M., Caulfield, B., O’Connor, A., & Morton, C. (2017). Weather and rail 
 delays: Analysis of metropolitan rail in Dublin. Journal of Transport Geography, 59, 69–76. 
 https://doi.org/10.1016/j.jtrangeo.2017.01.008 

3. Cui, J., & Liu, Z. (2023). Research on the influence of weather factors on urban rail transit  
 passenger flow. Transactions on Computer Science and Intelligent Systems Research, 1, 
 AIEA 2023. 

4. Ding, C., Duan, J., Zhang, Y., Wu, X., & Yu, G. (2018). Using an ARIMA-GARCH modeling approach 
 to improve subway short-term ridership forecasting accounting for dynamic volatility. IEEE 
 Transactions on Intelligent Transportation Systems, 19(4), 1054–1064.   
 https://doi.org/10.1109/TITS.2017.2711046 

5. Ding, C., Wang, D., Ma, X., & Li, H. (2016). Predicting short-term subway ridership and prioritizing 
 its influential factors using gradient boosting decision trees. Sustainability, 8(11), 1100. 
 https://doi.org/10.3390/su8111100 

6. Ettema, D., Friman, M., Olsson, L. E., & Gärling, T. (2017). Season and weather effects on travel-
 related mood and travel satisfaction. Frontiers in Psychology, 8, Article 140.   
 https://doi.org/10.3389/fpsyg.2017.00140 

7. Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A., Muñoz Sabater, J., Nicolas, J., 
 Peubey, C., Radu, R., Rozum, I., Schepers, D., Simmons, A., Soci, C., Dee, D., & Thépaut, J.-
 N. (2023). ERA5 hourly data on single levels from 1940 to present [Data set]. ECMWF. 
 https://doi.org/10.24381/cds.adbb2d47 

8. Jiang, S., & Cai, C. (2023). The impacts of weather conditions on metro ridership: An empirical 
 study from three mega cities in China. Travel Behaviour and Society, 31, 166–177.  
 https://doi.org/10.1016/j.tbs.2022.12.003 

9. Kim, K. (2020). Effects of weather and calendar events on mode‐choice behaviors for public 
 transportation. Journal of Transportation Engineering, Part A: Systems, 146(7), 04020054. 
 https://doi.org/10.1061/JTEPBS.0000371 

https://doi.org/10.1016/j.tra.2013.10.019
https://doi.org/10.1016/j.jtrangeo.2017.01.008
https://doi.org/10.1109/TITS.2017.2711046
https://doi.org/10.3390/su8111100
https://doi.org/10.3389/fpsyg.2017.00140
https://doi.org/10.24381/cds.adbb2d47
https://doi.org/10.1016/j.tbs.2022.12.003
https://doi.org/10.1061/JTEPBS.0000371


Predicting Ridership of 
New York City Subway 

Team 100 Jia Bloom • Noah Clark 
Chris Enslin • Kshitij Gurung 

Minh Duc Pham 
 

  14 
 

10. Lepage, S., & Morency, C. (2021). Impact of weather, activities, and service disruptions on 
 transportation demand. Transportation Research Record, 2675(1), 294–304.   
 https://doi.org/10.1177/0361198120966326 

11. Metropolitan Transportation Authority. (2023). Subway and bus ridership for 2023.  
 https://www.mta.info/agency/new-york-city-transit/subway-bus-ridership-2023 

12. Muñoz Sabater, J. (2019). ERA5-Land hourly data from 2001 to present [Data set]. ECMWF. 
 https://doi.org/10.24381/CDS.E2161BAC 

13. New York City Department of City Planning. (2023). Population estimates for New York City and 
 boroughs, vintage 2023. https://www.nyc.gov/assets/planning/download/pdf/planning-
 level/nyc-population/population-estimates/current-population-estimates-2023-June2024-
 release.pdf?r=1 

14. Ngo, N. S., & Bashar, S. (2024). The impacts of extreme weather events on U.S. public transit 
 ridership. Transportation Research Part D: Transport and Environment, 137, 104504.  
 https://doi.org/10.1016/j.trd.2024.104504  

15. Schimanke, S., Ridal, M., Le Moigne, P., Berggren, L., Undén, P., Randriamampianina, R.,  
 Andrea, U., Bazile, E., Bertelsen, A., Brousseau, P., Dahlgren, P., Edvinsson, L., El Said, A., 
 Glinton, M., Hopsch, S., Isaksson, L., Mladek, R., Olsson, E., Verrelle, A., & Wang, Z. Q. 
 (2021). CERRA sub-daily regional reanalysis data for Europe on single levels from 1984 to 
 present [Data set]. ECMWF. https://doi.org/10.24381/CDS.622A565A 

16. Singhal, A., Kamga, C., & Yazici, A. (2014). Impact of weather on urban transit ridership.  
 Transportation Research Part A: Policy and Practice, 69, 379–391.    
 https://doi.org/10.1016/j.tra.2014.09.008 

18. Tang, J., Zuo, A., Liu, J., et al. (2022). Seasonal decomposition and combination model for short-
 term forecasting of subway ridership. International Journal of Machine Learning and  
 Cybernetics, 13, 145–162. https://doi.org/10.1007/s13042-021-01377-7 

19. Vitello, P., Fiandrino, C., Connors, R. D., et al. (2024). TransitCrowd: Estimating subway  
 stations demand with mobile crowdsensing data. Data Science for Transport, 6, Article 6. 
 https://doi.org/10.1007/s42421-024-00091-4 

20.  Zippenfenig, P. (2023). Open-Meteo.com Weather API [Computer software]. Zenodo.  
 https://doi.org/10.5281/ZENODO.7970649 

 

https://doi.org/10.1177/0361198120966326
https://www.mta.info/agency/new-york-city-transit/subway-bus-ridership-2023
https://doi.org/10.24381/CDS.E2161BAC
https://www.nyc.gov/assets/planning/download/pdf/planning-level/nyc-population/population-estimates/current-population-estimates-2023-June2024-release.pdf?r=1
https://www.nyc.gov/assets/planning/download/pdf/planning-level/nyc-population/population-estimates/current-population-estimates-2023-June2024-release.pdf?r=1
https://doi.org/10.1016/j.trd.2024.104504
https://doi.org/10.24381/CDS.622A565A
https://doi.org/10.1016/j.tra.2014.09.008
https://doi.org/10.1007/s13042-021-01377-7
https://doi.org/10.1007/s42421-024-00091-4
https://doi.org/10.5281/ZENODO.7970649

	Appendix
	Figure 6: D3
	Figure 7: Tableau
	Figure 8: Prediction
	Figure 9: Decomposition, Seasonality Component Zoomed
	Figure 10: Residuals of Holt-Winters Exponential Smoothing Model
	Figure 11: Models and evaluation metrics


